Abstract

Abstract In the current study, pure and manganese-doped superparamagnetic iron oxide nanoparticles (Mn-doped SPIONPs) were successfully prepared by a green approach using a fresh aqueous extract of Asparagus officinalis as a reducing and stabilizing agent. Magnetic behaviors of pure and Mn-doped SPIONPs were measured at room temperature against various field strengths by a vibrating sample magnetometer (VSM). The saturation magnetization was in the range of 5.39–2.07 emu. Absorption at 340 nm in the UV-visible spectrum confirmed the presence of iron oxide nanoparticles (IONPs). The presence of plant extract as a capping agent was confirmed by Fourier transform infrared (FTIR) spectroscopy. The crystalline nature of IONPs was confirmed by X-ray diffraction. A gradual increase in size was observed with increasing concentration of Mn. The synthesized materials were applied successfully as sorbent for the effective removal of lead ions (Pb(ii)). Experimental results of adsorption were also analyzed by Langmuir and Freundlich isotherm equations at different temperatures. The results suggested that sorption processes were spontaneous, and the synthesized SPIONPs displayed PbII removal capacity at higher loadings with q m of 21.3 and 29.56 mg·g−1 for undoped and 7% Mn-doped IOPNs, respectively, as compared to the commercial activated carbon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.