Abstract
We report, an aqueous pod extract of Dolichos lablab L. mediated synthesis of magnetite nanoparticles (Fe3O4 NPs) for an efficient adsorption of organic dye pollutant from contaminated water. The Fe3O4 NPs were capped and stabilized with phytoconstituents of D. lablab L. The product Fe3O4 NPs was characterized by range of instrumental facilities such as Ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, FT-Raman spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive X-ray spectroscopy, Transmission electron microscopy, vibrating sample magnetometer, and thermogravimetric analysis. The synthesized 12.5 nm spherical shaped Fe3O4 NPs were used as adsorbent for elimination of crystal violet (CV) from contaminated water. It is found that the dye removal efficiency of Fe3O4 NPs was critically depends on pH of the reaction medium and dosage of Fe3O4 NPs. Adsorption data were analyzed using Langmuir, Freundlich, and Temkin isotherms as well as pseudo-first-order and pseudo-second-order kinetic models. The overall outcome of adsorption best fitted to Langmuir and psepseudo-second-order with their corresponding correlation coefficients of (R2 = 0.996) and (R2 = 0.977), respectively The biomolecules capped can act as a valuable adsorbent for removal of pollutant organic dyes from industrial outflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.