Abstract

The present paper describes a green and economic approach to explore EDTA/DTPA-functionalized magnetic chitosan as adsorbents for the removal of aqueous metal ions, such as Cd(II), Pb(II), Co(II), and Ni(II). EDTA and DTPA play roles not only as cross-linkers but also as functional groups in chelating metal ions. The morphology, structure, and property of the magnetic adsorbents were characterized by SEM, TEM, XRD, EDS, FT-IR, TGA, and VSM techniques. Their adsorption properties for the removal of metal ions by varying experimental conditions were also investigated. The kinetic results revealed that the transportation of adsorbates from the bulk phase to the exterior surface of adsorbents was the rate-controlling step. The obtained maximum adsorption capacities of magnetic adsorbents for the metal ions ranged from 0.878 to 1.561 mmol g–1. Bi-Langmuir and Sips isotherm models fitting well to the experimental data revealed the surface heterogeneity of the adsorbents. More significantly, the resulting EDTA-/...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.