Abstract

In this work, carbon quantum dots (CQDs) were prepared using a one-step hydrothermal green synthesis method from a low-cost and eco-friendly renewable biomass, specifically the Ficus benghalensis aerial roots (FB-AR). For the past two decades, CQDs have been noted for their tunable emission spectrum, quantum yield, biocompatibility, photostability, and unique optoelectronic properties such as photoluminescence (PL), and fluorescence. The synthesized Ficus benghalensis carbon quantum dots (FB-CQDs) were characterized for their physical, structural, and chemical properties using XRD, Raman, HRTEM, XPS, FTIR, TG-DTG, UV-visible, and photoluminance analysis. XPS analysis confirmed the presence of phytoconstituent functionalities and the composition of components. The FB-CQDs, which exhibit long-range emissions, have potential applications in various biological and therapeutic fields. Their bioimaging capability is tested in Escherichia coli bacteria. However, despite their promising characteristics, the FB-CQDs showed no antibacterial inhibition against Escherichia coli and Staphylococcus aureus, likely due to its carbonization temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.