Abstract
To exploit a green way to produce polymer nanoparticles using biodegradable and renewable macromolecules instead of petroleum-based ones, we initiated a novel and facile method to synthesize lignin nanoparticles (LNPs). The LNPs, having a hydrodynamic diameter ranging from ca. 80 to 230 nm, were formed by self-assembly in a recyclable and non-toxic aqueous sodium p-toluenesulfonate (pTsONa) solution at room temperature, with a lowest concentration of up to 48 g/L. We eliminated the unfavorable factors of restricted processing pH and lignin species by taking advantage of the hydrotropic chemistry and the synergistic dissociation of the entrapped pTsONa and intrinsic phenolic hydroxyl and carboxylic acid moieties of the LNPs. Because of the hydrotropic system, various water-soluble or water-insoluble drugs can be dissolved and encapsulated in the LNPs with an encapsulation efficiency of up to 90%. The drug-encapsulated LNPs also showed great properties, with sustained drug-releasing capability and biocompatibility. Furthermore, the unloaded drugs and free pTsONa could be easily recycled for multiple use, thereby achieving environmental sustainability. This synthesis approach with broad processing window could realize the industrial scale-up production of LNPs and have wide potential applications, including but not limited to versatile drug/bioactive macromolecule loading in the biomedical field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.