Abstract

In the current study, a green and facile route for the synthesis of iron nanoparticles (FeNPs) was adopted. The FeNPs were fabricated via a single step green route using aqueous leaves extract of Plumeria obtusa ( P . obtusa ) as a capping/reducing and stabilizing agents. The FeNPs were characterized by UV/Vis (Ultraviolet/Visible), FTIR (Fourier Transform Infra-Red spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy) and XRD (X-Ray Diffraction) techniques. The FeNPs were of spheroidal shape with average size of 50 nm. The biosynthesized FeNPs were further evaluated for their biological activities like antimicrobial, antioxidant and biocompatibility. The FeNPs displayed auspicious antimicrobial activity against bacterial ( E. coli , B. subtilis ) and fungal strains ( A. niger ) and S. commune . The test performed against red blood cells (RBCs) lysis (1.22 ± 0.02%) and macrophage (31 ± 0.09%) showed biocompatible nature of FeNPs. In vitro cytotoxicity against AU565 (82.03 ± 0.08–23.65 ± 0.065%) and HeLa (88.61 ± 0.06–33.34 ± 0.06%) cell lines showed cell viability loss in dose dependent manner (FeNPs 25–100 μg/mL). The antioxidant activities values were determined through DPPH, TRPA, NO and H 2 O 2 assays with values 70.23 ± 0.02%, 76.65 ± 0.02 μg AAE/mg, 74.43 ± 0.04% and 67.34 ± 0.03%, respectively. Based on the bioactivities, the green synthesized FeNPs have potential for therapeutic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.