Abstract

All-inorganic perovskite quantum dots (PQDs) have received considerable attentions due to their fascinating optical properties. However, the mainstream preparation methods rely on toxic solvents, raising significant environmental and safety concerns. In this work, ethyl acetate was chosen as the environmentally friendly anti-solvent to prepare silica-coated CsPbBr3 PQDs using a aminoalkoxysilane-assisted reprecipitation–encapsulation method. The as-prepared PQDs exhibited tunable emission wavelength and a medium photoluminescence quantum yield (PLQY) of 60%. Furthermore, CsPbBr3 PQDs were post-treated by different ligands with the aim of passivating surface defects. This strategy successfully mitigated the presence of surface defects and minimized non-radiative recombination losses in PQDs. As a result, the PLQY (achieving up to 73%) and stability of PQDs were substantially enhanced (luminescence stability improved by about 40% under the same test conditions). Our studies offer a novel approach for the environmentally friendly large-scale production of PQDs, opening up new possibilities for their practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.