Abstract
Polyethyleneterephthalate (PET) is an important component of post-consumer plastic waste. This study focuses on the potential of utilizing "waste-treats-waste" by synthesis of graphene using PET bottle waste as a source material. The synthesized graphene is characterized by SEM, TEM, BET, Raman, TGA, and FT-IR. The adsorption of methylene blue (MB) and acid blue 25 (AB25) by graphene is studied and parameters such as contact time, adsorbent dosage were optimized. The Response Surface Methodology (RSM) is applied to investigate the effect of three variables (dye concentration, time and temperature) and their interaction on the removal efficiency. Adsorption kinetics and isotherm are followed a pseudo-second-order model and Langmuir and Freundlich isotherm models, respectively. Thermodynamic parameters demonstrated that adsorption of dye is spontaneous and endothermic in nature. The plastic waste can be used after transformation into valuable carbon-based nanomaterials for use in the adsorption of organic contaminants from aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.