Abstract
Superior qualities to bulk material and larger surface area to volume ratio are some of the primary reasons that account for the wide use of nanoparticles (NPs) in biological applications. Advancements in molecular-level engineering and environmental and health concerns are driving factors in the green synthesis of NPs. Plant-based NP synthesis provides a good alternative compared to hazardous physical and chemical techniques of synthesis of NPs. An experimental study is carried out on the green synthesis of Fe/Ni/Cr oxide NPs using Costus pictus extract. The study encompassed an array of characterization techniques, including UV–visible spectroscopy for absorption properties, X-ray diffraction (XRD) for crystallinity assessment, and Fourier-transform infrared (FTIR) spectroscopy to probe the presence of phenolic groups in flavonoids that influence NP formation. Surface morphology and composition were elucidated using scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), while transmission electron microscopy (TEM) affirmed the NPs’ size (approximately 20 nm). The surface area of the NPs, 96.806 m2/g, was determined through BET analysis. Furthermore, the antibacterial potential of the NPs against various bacterial strains, including S. mutans, E. coli, P. aeruginosa, and S. aureus, was investigated using the agar well diffusion method. The NPs showed good antibacterial potential against bacterial species E. coli and P. aeruginosa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.