Abstract

Fe3O4and Fe3O4/TiO2magnetic nanoparticles have been successfully prepared using an eco-friendly green synthesis method with variousMoringa Oleifera(MO) extract concentrations. The X-ray diffraction and transmission electron microscopy results confirmed that the microstructure of Fe3O4nanoparticles is a cubic inverse spinel structure with an average particle size of 9.2–11.7 nm and lattice parameters is in the range of 8.14–13.60 Å and the MO did not change the morphological structure of Fe3O4. Fourier-transform infrared showed that the samples had magnetic particles vibration peaks at 632 cm-1and 570 cm-1, 500–700 cm-1for Ti-O peaks, and 1047 cm-1for aromatic C-C indicating green synthesis. Furthermore, the results of UV-VIS data presented the absorption edges of Fe3O4, Fe3O4-MO, and Fe3O4/TiO2-MO were 187.9 nm, 198.7 nm, and 197.1 nm, respectively. The bandgap energy of Fe3O4-MO is in the range of 2.62–2.66 eV and the bandgap energy of Fe3O4/TiO2-MO is 2.76 eV which explains that it depends on the bioactive compounds. Based on these results, the green synthesis nanoparticles have the potential to be applied in the industrial sector, especially for photocatalyst applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.