Abstract
The study addresses the challenge of developing sustainable and efficient catalytic systems for the synthesis of benzimidazole derivatives, which are of significant importance in the field of medicinal chemistry due to their diverse biological activities. The objective is to develop a recyclable and environmentally friendly catalyst utilizing copper(II)-loaded alginate hydrogel beads, which can facilitate the synthesis of these compounds while minimizing environmental impact. The preparation process entails crosslinking sodium alginate with copper(II) ions to form hydrogel beads, which are then washed and characterized through techniques such as scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Inductively coupled plasma (ICP), and Zeta potential to analyses the morphology, composition and porosity of the beads. The catalytic performance is evaluated through recycling tests, which demonstrate the catalyst's ability to maintain selectivity and activity over multiple reaction cycles. The Cu(II)-Alg hydrogel beads were used for synthesizing substituted benzimidazole derivatives in a water-ethanol solvent at room temperature. This method offers significant advantages, including extremely mild reaction conditions, short reaction times (<1 h), high yields (70–94 %), and ease of processing. The most significant results indicate that the Cu(II)-alginate catalyst exhibits a high loading capacity and retains its catalytic efficiency for at least 3 cycles, thereby highlighting its potential for sustainable applications in organic synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.