Abstract

Recently, the development of a novel fluorescent (FL) nanoprobe for ratiometric detection of antibiotics in real-world samples has received more and more attention. In this article, the distinctive optical properties of deep-ultraviolet emission, a narrowed full width at half maximum (∼20 nm) and excitation-independent emission of a carbonized nanoprobe (CNP) were easily prepared by an environmentally friendly approach of solvothermal treatment using melamine as the precursor and H2O as the solvent. The obtained CNP can be further utilized as an efficient ratiometric FL nanoprobe for enrofloxacin (EFC) and feroxacin (FXC) detection based on the fact that the FL quenching of the CNP was accompanied by an FL increase with EFC/FXC based on the inner filter effect (IFE). Under the optimal conditions, excellent linear relationships existed between the relative FL intensity (FL290 nm/FL412 nm, CNP for FL290 nm and antibiotics for FL412 nm) and the concentrations of FXC and EFC in the range of 0.05-500.0 μM and 0.05-200.0 μM, with limits of detection of 21.74 and 22.43 nM (3σ/k), respectively. With the proposed ratiometric FL sensor, FXC and EFC in milk and serum samples can be rapidly and selectively analyzed without tedious pretreatment processes for real-world samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call