Abstract

Hydrogen production via electrochemical water splitting is limited thermodynamically by the sluggish oxygen evolution reaction (OER) at the anode. The use of noble metal-based catalysts leads to an economic bottleneck because of the high cost associated with such materials. This article is an electrochemical investigation of an economically viable and advanced OER catalyst made of cobalt/graphene nanocomposite quantum dots (QDs). A series of characterization techniques, such as high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and fluorescence measurements, were performed, and they confirmed the formation of graphene QDs as well as the formation of cobalt-based QDs. A very high current density of 43.16 mA cm–2 was observed for the QD nanocomposite, whereas smaller current densities were seen for Co nanoparticles (21.1 mA cm–2) and a benchmark Pt/C commercial catalyst (5.99 mA cm–2). Furthermore, an overpotent...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.