Abstract

Biosynthesis of metal-oxide nanoparticles using plant extracts has been attracting increasing interest. In this study, we focused on the green synthesis of zinc oxide (ZnO) nanomaterials using zinc acetate as a precursor and mulberry fruit extract as a green reducing agent and determined the antioxidant activity. Powder X-ray diffraction and UV-Vis and Fourier Transform Infra-Red (FT-IR) spectroscopy were used for structure elucidation and to determine the crystallinity of the synthesized product. The morphology of samples was determined using Scanning Electron Microscopy (SEM). Our results indicated the successful synthesis of ZnO nanoparticles. SEM findings revealed the nanoparticles to be spherical; they were found to agglomerate and showed a narrow space between particles, which could be indicative of improved activity. The antioxidant activity of ZnO nanoparticles was determined using a 2,2-Diphenyl-1-Picryl-Hydrazyl (DPPH) free-radical scavenging assay taking into account time and concentration. Our results indicated that ZnO nanoparticles with mulberry fruit extract that were synthesized using green chemistry could effectively scavenge the free DPPH radicals, thereby confirming their superior antioxidant activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call