Abstract

A new method for green synthesis of silver nanoparticles using the cell-free filtrate of Penicillium nalgiovense AJ12 as reducing and protecting agent was described. The pathway is based on the reduction of Ag1+ by protein(s). Various techniques such as UV–Vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared and Zeta potential measurements were used to characterize the silver nanoparticle obtained. The results revealed synthesis of the spherical silver nanoparticles coated with protein(s). The average size of the particles obtained from TEM was 15.2 ± 2.6 nm. DLS measurements showed that the particle size was higher than that estimated from TEM measurements and was 25.2 ± 2.8 nm. Studies on the role of the cell-free filtrate proteins in the synthesis of silver nanoparticles indicated that the process is non-enzymatic but involves amino acids interactions with silver ions. It was found that the aqueous silver nanoparticles suspensions exhibited excellent stability over a wide range of ionic strength, pH and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call