Abstract

During the past few decades, many of the synthetic chemicals are able to produce nanoparticles and nanoclusters, although these chemicals primarily act as reducing and capping agents, they are very toxic and hazardous and make the nanoparticles biologically incompatible. Thus there is need for green chemistry that includes a clean, non-toxic and environmental friendly method of nanoparticles synthesis. Cobalt, iron and copper nanoparticles were synthesized using the stem-bark extract of khayasenegalensis (mahogany) where cobalt chloride (CoCl2 6H2O), ferric chloride (FeCl2), and copper sulphate (CuSO4 H2O) were used as the metal precursor respectively. The change in color from light brown to dark brown indicates the formation of cobalt nanoparticles, from light brown to dark green indicates the formation of copper nanoparticles and also the change in color from light brown to a dark color indicates formation of iron nanoparticles. The nanoparticles were further characterized using UV visible spectroscopy, FTIR, and SEM. The UV result for CoNPs showed the highest peak at 500nm and both FeNPs and CuNPs showed the highest peak at 300nm. The FTIR results for all the nanoparticles showed the presence of Alkaloids and triterpenes. Also the SEM result showed spherical granular, partially dispersed and monodispersed morphology for CoNPs, FeNPs and CuNPs respectively. Moreover, the antibacterial activity of the synthesized NPs when tested against two gram positive bacteria and two gram negative bacteria was evaluated and good results were obtained. The antifungal activity when tested against two fungi showed a very good result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call