Abstract

This study focuses on the use of green synthesized silver nanoparticles (Ag-NPs) with the aid of Camellia sinensis (black tea) extract to provide antibacterial activity on ceramic structure. The synthesized Ag nanoparticles were added to the glaze used in the ceramic structures and mixed homogeneously. The homogeneous mixture was characterized by transmission electron microscopy (TEM), X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–Vis spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FTIR) techniques. The SPR band of the synthesized biogenic Ag NPs was observed as 422 nm during the reaction at room temperature. TEM analysis revealed that Ag NPs were spherical and a particle size between 10 and 20 nm. Furthermore, the antibacterial properties of the homogeneous mixture (Ag NPs and glaze) were tested against Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Biogenic Ag NPs at a concentration of 100 μg/ml were observed to have 90%, 75%, 75%, 80% lethal effects against S. aureus, MRSA, B. Subtilis, and E. Coli bacteria, respectively. The antibacterial results of Ag NPs obtained with the help of Camellia sinensis show that they may have potential application and development in the field of ceramics. In addition, the antibacterial activity of commercially available antibiotics and the prepared Ag NPs were analyzed in ceramic glazes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.