Abstract

The increase in energy loss due to friction and the use of large amounts of lubricants to improve it are major challenges we face from a global environmental perspective. Pitcher-plant-inspired liquid-infused surfaces (LISs) are emerging super-repellent surfaces against liquids. However, their coefficient of friction (CoF) against solids is higher than that of conventional lubricant surfaces. Herein, we demonstrate superlubricity with a single water droplet placed on a LIS holding oleic acid, a component of plant oil. When a water droplet is placed on the fluid layer, the CoF under reciprocating and rotating friction is 0.012 and 0.0098, respectively. A force in the direction opposite to the loading due to the Laplace pressure on the droplet and an autonomous positional movement of the water accompanied by the optimization of surface energy maintain the fluid-lubrication state and prevent direct contact between the surface and the friction material, resulting in a decrease of the dependence of the CoF on the friction velocity. The key technology here will not only present a novel strategy for preparing LISs against solids but also serve as a step toward a sustainable green strategy for friction reduction and lubrication, which would greatly reduce energy loss and environmental degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.