Abstract

The use of biologically active compounds is often limited due to their poor aqueous solubility, which generally reduces their bioavailability and useful efficacy. In this regard, a wide search is currently underway for colloidal systems capable of encapsulating these compounds. In the creation of colloidal systems, long-chain molecules of surfactants and polymers are mainly used, which in an individual state do not always aggregate into homogeneous and stable nanoparticles. In the present work, cavity-bearing calixarene was used for the first time to order polymeric molecules of sodium carboxymethyl cellulose. A set of physicochemical methods demonstrated the spontaneous formation of spherical nanoparticles by non-covalent self-assembly contributed by macrocycle and polymer, and formed nanoparticles were able to encapsulate hydrophobic quercetin and oleic acid. The preparation of nanoparticles by supramolecular self-assembly without use of organic solvents, temperature and ultrasound effects can be an effective strategy for creating water-soluble forms of lipophilic bioactive compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call