Abstract

Preferred crystalline orientation at the surface of quasi-2D organic-inorganic halide perovskites is crucial to promote vertical carrier transport and interface carrier extraction, which further contribute to device efficiency and stability in photovoltaic applications. However, loose unoriented and defective surfaces are inevitably formed in the crystallization process, especially with the introduction of bulky organic cations into the quasi-2D perovskites. Here, a facile and effective surface polishing method using a natural-friendly green solvent, 2,2,2-trifluoroethanol, is proposed to reconstruct the surface. After solvent polishing, the randomly oriented phases containing trap sites on the surface are successfully removed, and the compact vertical-oriented phases underneath are revealed with less defectiveness and better smoothness, which greatly facilitates carrier transport and interfacial charge extraction. Consequently, the green solvent polished devices show a boosting efficiency of 18.38% with a high open-circuit voltage of 1.21 V. The devices also show improved storage and operational stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.