Abstract

The demand for increasing the shelf life of fresh food as well as the need for protecting the food against foodborne infections warrant the demand for increasing the shelf life of fresh food. The incorporation of nanoparticles into the packaging material can enhance the preservation of perishable foods. Silver nanoparticles (AgNPs), in particular, have antibacterial, anti-mold, anti-yeast, and anti-viral activities can be embedded into the biodegradable packaging materials for this purpose. This study focuses on antimicrobial packaging materials for food by mixing the extracts of different plants with silver nitrate and depositing this mixture as a layer on the blotting papers, which are thick sheets of paper made of cellulose. Because the blotting papers are highly absorbent and porous, silver nitrate solution along with the plant extracts can be easily applied and allowed for in situ synthesis of AgNPs. Subsequently, these papers were analyzed and characterized using scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, and energy dispersive X-ray analysis. The coated paper exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, the coated paper when used as a packaging material for tomatoes and coriander leaf, the shelf life was extended to about 30 days and 15 days respectively. The prepared cost-effective silver packing material can be used in food packaging for various perishable foods.

Highlights

  • The perishability of fresh foods is mainly due to the microbial spoilage

  • The AgNPs obtained by green synthesis are considered as less-toxic, biodegradable and cheaper when compared to those synthesized using chemical methods

  • We developed AgNPs coated packing materials using various plant extracts (Fig. 2) and tested their antibacterial properties against E. coli and S. aureus

Read more

Summary

Introduction

The perishability of fresh foods is mainly due to the microbial spoilage. a variety of methods such as canning, freezing, drying, etc are used to improve the shelf life of fresh fruits and vegetables, these forms of preservation require a lot of energy and cause the fruits and vegetables to lose their nutritive value. There is a need to find newer ways for increasing the shelf life of fresh and ready-to-eat foods and to develop microbiologically safer foods using environmentally sustainable technologies. Along these lines, we tried to develop food packaging materials with antimicrobial properties. The most widely used antibacterial agents include organic acids such as acetic acid, benzoic acid, lactic acid, citric acid, and propionic acid[4] Most of these preservative chemicals have a long history of usage and have received generally recognized as safe (GRAS) status. These chemicals are often used in combination with other antibacterial substances such as nisin or chitosan[5].there is an increasing trend towards preventing the incorporation of artificial chemicals into food or contact materials[6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.