Abstract

Global warming and climate change are threatening life on earth. These changes are due to human activities resulting in the emission of greenhouse gases. This is caused by intensive industrial activities and excessive fuel energy consumption. Recently, the scheduling of production systems has been judged to be an effective way to reduce energy consumption. This is the field of green scheduling, which aims to allocate jobs to machines in order to minimize total costs, with a focus on the sustainable use of energy. Several studies have investigated parallel-machine shops, with a special focus on reducing and minimizing the total consumed energy. Few studies explicitly include the idle energy of parallel machines, which is the energy consumed when the machines are idle. In addition, very few studies have considered the elimination of idle machine times as an efficient way to reduce the total consumed energy. This is the no-idle machine constraint, which is the green aspect of the research. In this context, this paper addresses the green parallel-machine scheduling problem, including release dates, delivery times, and no-idle machines, with the objective of minimizing the maximum completion time. This problem is of practical interest since it is encountered in several industry processes, such as the steel and automobile industries. A mixed-integer linear programming (MILP) model is proposed for use in obtaining exact solutions for small-sized instances. Due to the NP-hardness of the studied problem, and encouraged by the successful adaptation of metaheuristics for green scheduling problems, three genetic algorithms (GAs) using three different crossover operators and a simulated annealing algorithm (SA) were developed for large-sized problems. A new family of lower bounds is proposed. This was intended for the evaluation of the performance of the proposed algorithms over the average percent of relative deviation (ARPD). In addition, the green aspect was evaluated over the percentage of saved energy, while eliminating the idle-machine times. An extensive experimental study was carried out on a benchmark of test problems with up to 200 jobs and eight machines. This experimental study showed that one GA variant dominated the other proposed procedures. Furthermore, the obtained numerical results provide strong evidence that the proposed GA variant outperformed the existing procedures from the literature. The experimental study also showed that the adoption of the no-idle machine time constraints made it possible to reduce the total consumed energy by 29.57%, while the makespan (cost) increased by only 0.12%.

Highlights

  • IntroductionThis is due to greenhouse gas emission

  • In recent decades, impressive climate change has been observed

  • The best metaheuristic was selected, and its absolute efficiency was evaluated throughout the average relative gap using the lower bound (LB)

Read more

Summary

Introduction

This is due to greenhouse gas emission. These greenhouse gas emissions are strongly related to excessive industrial activities and fuel energy consumption. According to the US Energy Information 4.0/). Administration, the consumed energy in the industrial sector is approximately 54% of the total consumed energy [1]. Production planners should take into account these environmental issues when preparing their plans. The common way to struggle against these environmental concerns is the efficient use of energy in manufacturing industries [2]

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.