Abstract

Green’s relations are a fundamental tool in the structure theory of semigroups. They can be defined by reachability in the (right/left/two-sided) Cayley graph. The equivalence classes of Green’s relations then correspond to the strongly connected components. We study the complexity of Green’s relations in semigroups generated by transformations on a finite set. We show that, in the worst case, the number of equivalence classes is in the same order of magnitude as the number of elements. Another important parameter is the maximal length of a chain of strongly connected components. Our main contribution is an exponential lower bound for this parameter. There is a simple construction for an arbitrary set of generators. However, the proof for a constant size alphabet is rather involved. We also investigate the special cases of unary and binary alphabets. All these results are extended to deterministic finite automata and their syntactic semigroups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.