Abstract
The time-fractional diffusion equation coupled with a first-order irreversible reaction is investigated by employing integral transforms. We derive Green’s functions for short and long times via approximations of the Mittag-Leffler function. The time value for which the crossover between short- and long-time asymptotic holds is presented in explicit form. Based on the developed Green’s functions, the exact analytic asymptotic solutions of the time-fractional reaction-diffusion equation are obtained. The applicability of the obtained solutions is demonstrated via quantification of the reaction-diffusion kinetics during heterogeneous catalytic chitin conversion to chitosan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.