Abstract

In the present paper, an analytical expression of the Green’s function of linearized Saint–Venant equations (LSVEs) for shallow water waves is provided and applied to analyse the propagation of a perturbation superposed to a uniform flow. Independently of the kinematic character of the base flow, i.e., subcritical or supercritical uniform flow, the effects of a non-uniform vertical velocity profile and a non-constant resistance coefficient are accounted for. The use of the Darcy–Weisbach friction law allows a unified treatment of both laminar and turbulent conditions. The influence on the wave evolution of the wall roughness and the fluid viscosity are finally discussed, showing that in turbulent regime the assumption of constant friction coefficient may lead to an underestimation of both amplification and damping factors on the wave fronts, especially at low Reynolds numbers. This conclusion has to be accounted for, particularly in describing hyper-concentrated suspensions or other kinds of Newtonian mixtures, for which the high values of the kinematic viscosity may lead to relatively low Reynolds numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.