Abstract
The eigenvalues and eigenfunctions of certain operators generated by symmetric differential expressions with constant coefficients and self-adjoint boundary conditions in the space of Lebesgue squareintegrable functions on an interval are explicitly calculated, while the resolvents of these operators are integral operators with kernels for which the theorem on an eigenfunction expansion holds. In addition, each of these kernels is the Green’s function of a self-adjoint boundary value problem, and the procedure for its construction is well known. Thus, the Green’s functions of these problems can be expanded in series in terms of eigenfunctions. In this study, identities obtained by this method are used to calculate the sums of convergent number series and to represent the sums of certain power series in an intergral form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.