Abstract

Recently, Green's Function Monte Carlo methods have been developed which enable one to perform exact calculations for the ground states of three and four body nuclei. These methods allow the alpha particle to be used as a testing ground for a variety of two- and three-nucleon interaction models, both in terms of their ground state energies and a variety of other ground state expectation values. We present a brief review of GFMC methods as applied to light nuclei, including recent improvements of the algorithm and a discussion of the prospects for the inclusion of momentum-dependent terms. We then discuss results for the ground state energy, one- and two-body density distributions, D-state probability, coulomb sum rule, and momentum distributions. The GFMC results are compared to experimental results and to variational Monte Carlo calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call