Abstract
ABSTRACTWe consider the discrete, fractional operator involving the nabla Caputo fractional difference, which can be thought of as an analogue to the self-adjoint differential operator. We show that solutions to difference equations involving this operator have expected properties, such as the form of solutions to homogeneous and nonhomogeneous equations. We also give a variation of constants formula via a Cauchy function in order to solve initial value problems involving . We also consider boundary value problems of any fractional order involving . We solve these BVPs by giving a definition of a Green's function along with a corresponding Green's Theorem. Finally, we consider a (2,1) conjugate BVP as a special case of the more general Green's function definition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.