Abstract

Dyadic Green's functions for inhomogeneous parallel-plate waveguides are considered. The usual residue series form of the Green's function is examined in the case of modal degeneracies, where secondorder poles are encountered. The corresponding second-order residue contributions are properly interpreted as representing "associated functions" of the structure by constructing a new dyadic root function representation of the Hertzian potential Green's dyadic. The dyadic root functions include both eigenfunctions (corresponding to first-order residues) and associated functions, analogous to the idea of Jordan chains in finite-dimensional spaces. Numerical results are presented for the case of a two-layer parallel-plate waveguide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.