Abstract

AbstractNew computational forms are derived for Green's function of an exponentially graded elastic material in three dimensions. By suitably expanding a term in the defining inverse Fourier integral, the displacement tensor can be written as a relatively simple analytic term, plus a single double integral that must be evaluated numerically. The integration is over a fixed finite domain, the integrand involves only elementary functions, and only low‐order Gauss quadrature is required for an accurate answer. Moreover, it is expected that this approach will allow a far simpler procedure for obtaining the first and second‐order derivatives needed in a boundary integral analysis. The new Green's function expressions have been tested by comparing with results from an earlier algorithm. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.