Abstract
Convenient analytic finite-dimensional approximations for basic operators of scattering theory-specifically, the Green's function and the off-shell T matrix—are constructed in an oscillator basis for real-and complex-valued local and nonlocal interaction potentials. It is shown that the approximate operators converge smoothly to their exact counterparts as the dimensions of the oscillator basis are increased step by step. The simple and rather accurate formulas obtained in this study can be widely used in various applications of quantum scattering theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.