Abstract

The current study describes the production of maize starch–fatty acid complexes through high speed homogenization, a novel field of research, without heat or any chemical treatment. The starch–fatty acid complexes were produced with three different fatty acids, i.e. stearic acid (T1), palmitic acid (T2) and lauric acid (T3). The complexes were analyzed through various techniques. The results reveal that the complexing index (CI), swelling power (SP) and solubility (S) for T1 were significantly higher compared to T2 and T3. In X-ray diffraction (XRD) studies, relatively lower crystalline (V-type pattern) structures were obtained for the samples T1–T3, where T2 showed the highest crystallinity amongst all. Fourier transformed infrared (FTIR) spectra showed characteristic bands i.e., OH, C=O, C–O and long-chain CH2 functionalities thus confirming the overall incorporation of acids into glycoside moieties. The Scanning electron microscopy (SEM) analysis showed sub-crystalline matrix structures with fewer or no spherulites indicating the overall incorporation of acids in starch. The samples showed relatively low thermal stability in the thermal gravimetric analysis (TGA) in the range of 180 to 280 °C. These results suggest that high speed homogenization had the potential for the development of green and biocompatible maize starch–fatty acid complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.