Abstract

Cellulose is the most abundant biopolymer on earth and the main component of crop by-products, but its development is inadequate. Preparation and application of nanocrystalline cellulose (NCC) are drawing much attention from both the academia and the industry because of its unique and exceptional physicochemical properties. For the first time, rod-like NCC was successfully prepared through an environmentally friendly ultrasonic-assisted enzymatic hydrolysis process from wheat microcrystalline cellulose. NCC yield reached 22.57% under the optimal condition of hydrolysis time of 120h combined with ultrasonic treatment of 10 times each for 60min, whereas the NCC yield was only 15.76% in the absence of ultrasonic treatment. Images of transmission electron microscopy showed that the NCC samples exhibited a rod-like structure with a width of less than 10nm and a length of 200–500nm, 100–200nm, and 40–50nm when the ultrasonic treatment was 0, 30, and 60min, respectively. Dynamic light scattering analysis demonstrated that as-obtained NCC exhibited a smaller value in particle size than that prepared in the absence of ultrasonic treatment. X-ray diffraction results revealed that the NCC sample exhibited higher crystallinity as ultrasonic time increased. NCC fabricated by this facile, safe, and eco-friendly ultrasonic-assisted enzymolysis method can have great potential in applications in bionanocomposites, drug delivery, agriculture, and cosmetic industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.