Abstract
This study investigates the efficiency of cold storage warehouses and contributes to sustainable supply chain management by integrating eco-friendly practices into storage operations. In facilities for milk and its derivatives, unregulated order handling significantly increases energy consumption due to frequent door openings in the cooler. To address this challenge, we developed a novel mathematical model aimed at optimizing order sequences and minimizing energy costs, addressing a previously unexplored gap in the literature. A genetic algorithm (GA) was employed to solve this model, with careful consideration of carbon emissions generated during the algorithm’s execution. We utilized the Yates notation, an experimental design technique, to systematically optimize the GA’s parameters, ensuring robust and statistically valid results. This methodology enabled a thorough analysis of the factors influencing energy consumption. The findings enhance energy efficiency in cold storage warehouses, leading to reduced carbon dioxide emissions and fostering sustainable practices within supply chain management. Ultimately, this study successfully integrates green practices into cold storage operations, supporting broader sustainability objectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.