Abstract

Due to their distinctive characteristics and widespread application across all scientific disciplines, nanoparticles have attracted a lot of attention in the current millennium. Green synthesis of ZnO-NPs is gaining a lot of interest at the moment due to a number of its advantages over traditional methods, including being quicker, less expensive, and more environmentally friendly. In the current study, two distinct plant extracts are used to quickly, cheaply, and environmentally friendly synthesize zinc oxide nanoparticles (ZnO-NPs). Mint (Mentha spicata) and basil (Ocimum basilicum) were the plants employed in this study as stabilizing agents to synthesize ZnO-NPs with a green chemistry approach. The innovative aspect of the study is the use of mint and basil extracts in the conversion of zinc chloride to zinc oxide and then determining the effect of these two types of nanoparticles produced by green synthesis on the growth parameters of the plant when they reach the plants by foliar spraying and their uptake by plants and evaluating the antibacterial properties of these nanoparticles. The physical properties of the produced nanoparticles were investigated using XRD, SEM, and FTIR. Moreover, Escherichia coli and Staphylococcus aureus were used to demonstrate the antibacterial properties of ZnO-NPs against both gram-positive and gram-negative bacteria, respectively. Synthesized ZnO-NPs were also given as foliar treatment in order to determine Zn+2 uptake by plants and potential toxic effects on the growth of wheat. The shape of ZnO-NPs was triangular, as revealed by SEM analysis. In the X-ray diffraction study, strong and clearly discernible sharp peaks were seen, with an average size of 24.5 nm for M-ZnO-NPs and 26.7 nm for B-ZnO-NPs determined using Scherrer's formula. The phytoconstituents of the plant extract served as capping/stabilizing agents during the synthesis of ZnO-NPs, as demonstrated by Fourier transform-infrared spectroscopy. The produced nanoparticles were applied to the green parts of wheat plants by spraying, and the development of the plants and the change of zinc uptake were investigated. At the same time, the effect of these three types of nanoparticles on the germination of wheat seeds in the soil medium containing these nanoparticles was investigated. According to experimental results, M-ZnO-NPs (produced from mint) and B-ZnO-NPs (produced from basil) improved the germination percentage of wheat at 400 mg/L concentration (100%), while raw ZnO-NPs showed 90% germination at the same concentration. When the Zn+2 uptake of the plant by the leaves depending on the Zn+2 concentration in the environment after spraying was examined, it was determined that the Zn+2 uptake of the plants increased due to the increase in the applied Zn+2 concentration. The highest Zn+2 uptake of the plant was determined as 50, 25, and 50 mg/L for M-ZnO-NP, B-ZnO-NPs, and raw ZnO-NPs, respectively. Therefore, it has been determined that plant growth varies depending on the type and concentration of ZnO-NPs, and therefore, if foliar nanoparticle applications are made to wheat, the threshold concentrations, sizes, and types of ZnO-NPs should be carefully evaluated. In addition, antibacterial properties results showed that S. aureus was more sensitive to all three types of ZnO-NPs than E. coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call