Abstract

Background Root-knot nematodes are known to cause significant damage to eggplants. New approaches by green silver nanoparticles (GSN) are used to control plant-parasitic nematode to avoid chemical nematicide hazards. Objectives Analyses of the incorporation of different concentrations of nanoparticles on two different algae (Ulva lactuca and Turbinaria turbinata) were carried out. Furethermore, the effect of GSN on the eggplant DNA profile was studied using RAPD and EST molecular markers. Materials and Methods Green Silver Nanoparticles (GSN) have been synthesized and characterized using the algal extract solution prepared from two algal genera. Nematicidal effect of the GSN was evaluated in greenhouse on eggplants (Solanum melongena cv. Login). Genomic DNA was extracted for use in molecular analysis. Both RAPD and EST molecular markers were used to study the GSN effect on eggplant DNA modification. Results GSN (17 mg.mL-1) obtained from U. lactuca was more effective in reducing second-stage juveniles (J2s) of M. javanica (69.44%) population in soil. All treatments improved eggplants growth parameters. Change in DNA profile using of both RAPD and EST markers was noted. Conclusions GSN (12.75 mg.100 mL-1) were effective on controlling the root-knot nematode (both T. turbinata and U. lactuca algae), similar to chemical control in eggplants. GSN did not cause any phototoxicity in eggplants under treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.