Abstract

Non-edible feedstocks are regarded as a sustainable source of renewable energy. In order to find renewable, cheaper and easier methods to obtain energy, attention has been paid to develop potential green catalyst to produce renewable biodiesel. The catalyst was characterized by X-ray diffraction (XRD) results in combination with thermogravimetry–differential thermal analysis (TG–DTA), Brunauer–Emmer–Teller (BET), Fourier transfrom-infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM analysis depicted that calcium methoxide (Ca(OCH3)2) catalysts were in size of 34.7nm. The reaction parameters namely; reaction time, methanol/oil molar ratio, catalyst dosage were investigated for fatty acid methyl ester (FAME) yield. The highest biodiesel yield (95%) was appraised under the optimum condition (i.e. catalyst amount of 2wt.%; methanol/oil molar ratio of 15:1, reaction time of 90min). The Ca(OCH3)2 phase of catalyst can be regarded as an active phase to get high yield of biodiesel which was confirmed from characterization study. Furthermore, important fuel properties were also investigated and satisfied the ASTM D6751 and European 14214 biodiesel standards. Thus, Ca(OCH3)2 catalyst prepared in this study was having efficient, low toxicity, cost effective and easy to prepare for green fuels production especially biodiesel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.