Abstract

A. E. Green, FRS and P. M. Naghdi developed a new theory of continuum mechanics based on an entropy identity rather than an entropy inequality. In particular, within the framework of this theory, they developed a new set of equations to describe viscous flow. The new theory additionally involves vorticity and spin of vorticity. We here develop the theory of Green and Naghdi to be applicable to thermal convection in a fluid in which is suspended a collection of minute metallic-like particles. Thus, we develop a non-Newtonian theory we believe capable of describing a nanofluid. Numerical results are presented for copper oxide or aluminium oxide particles in water or in ethylene glycol. Such combinations are used in real nanofluid suspensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.