Abstract

Moisture-electric generators (MEGs) has emerged as promising green technology to achieve carbon neutrality in next-generation energy suppliers, especially combined with ecofriendly materials. Hitherto, challenges remain for MEGs as direct power source in practical applications due to low and intermittent electric output. Here we design a green MEG with high direct-current electricity by introducing polyvinyl alcohol-sodium alginate-based supramolecular hydrogel as active material. A single unit can generate an improved power density of ca. 0.11 mW cm-2, a milliamp-scale short-circuit current density of ca. 1.31 mA cm-2 and an open-circuit voltage of ca. 1.30 V. Such excellent electricity is mainly attributed to enhanced moisture absorption and remained water gradient to initiate ample ions transport within hydrogel by theoretical calculation and experiments. Notably, an enlarged current of ca. 65 mA is achieved by a parallel-integrated MEG bank. The scalable MEGs can directly power many commercial electronics in real-life scenarios, such as charging smart watch, illuminating a household bulb, driving a digital clock for one month. This work provides new insight into constructing green, high-performance and scalable energy source for Internet-of-Things and wearable applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.