Abstract

Owing to the unique characteristics of sensor devices, finding the energy-efficient modulation with a low-complexity implementation (refereed to as green modulation) poses significant challenges in the physical layer design of wireless sensor networks (WSNs). Towards this goal, the authors present an in-depth analysis on the energy efficiency of various modulation schemes using realistic models in the IEEE 802.15.4 standard to find the optimum distance-based scheme in a WSN over Rayleigh and Rician fading channels with path loss. The authors describe a proactive system model according to a flexible duty-cycling mechanism utilised in practical sensor apparatus. The present analysis includes the effect of the channel bandwidth and the active mode duration on the energy consumption of popular modulation designs. Path-loss exponent and DC–DC converter efficiency are also taken into consideration. In considering the energy efficiency and complexity, it is demonstrated that among various sinusoidal carrier-based modulations, the optimised non-coherent M-ary frequency shift keying (NC-MFSK) is the most energy-efficient scheme in sparse WSNs for each value of the path-loss exponent, where the optimisation is performed over the modulation parameters. In addition, the authors show that the on–off keying displays a significant energy saving as compared to the optimised NC-MFSK in dense WSNs with small values of path-loss exponent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.