Abstract

Considerable attention has been focused on the application of natural cellulosic materials due to the cost-effectiveness, renewability, and biodegradability of cellulose. However, gaps between cellulose-based and petroleum-based materials still exist. In this study, a green, environmental modification method for cellulose by enzyme-initiated reversible addition fragmentation chain transfer (RAFT) graft polymerization was reported. First, the grafting of acryloyl chloride (AC) provided reaction sites on cellulosic fiber surfaces, followed by the enzymatic RAFT graft polymerization of acrylamide (AM). The grafting of well-controlled polyacrylamide (PAM) chains on the cellulosic material surface was verified by Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), and the controlled grafting ratio was also estimated. The transition of wetting behaviors after the modification of AC and PAM also provided evidence for successful grafting on cellulosic materials. In addition, this method can be well applied for the preparation of various functional cellulosic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.