Abstract

Lignin extraction from biomass is heavily dependent on chemical processes that are harmful to the environment and the quality of the recovered lignin. Ionic liquid solvents are some of the latest solutions in green processing; however, their implementation for lignin recovery is limited by their high cost, typically high loadings requirements, and long processing times. To overcome these issues, in this study, high loadings of mixed hardwood flour (MHF) were processed with 1-butyl-3-methylimidazolium chloride (BmimCl) in a batch mixer. The rheological behaviour of the biomass and ionic liquid mixture was studied. The mixture had a high complex viscosity (approx. 107 Pa s) at low shear rates and displayed pronounced shear thinning behavior at 50 wt% MHF loading. A 22 factorial design was also implemented to study the effects of MHF solid loading amount and residence time on lignin extraction yield. A maximum yield of 36.6% was obtained at the maximum solid loading amount and residence time (50 wt% and 45 min, respectively). The extracted lignin samples were also characterized in comparison with commercial Kraft lignin and lignosulfonate. The novelty of this study is the successful lignin extraction at high solid loadings and shorter residence times compared to previous biomass pre-treatments with ionic liquids that employs low solid loading and long processing times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call