Abstract

By incorporating 4,7-diphenyl-2,1,3-benzothiadiazole instead of 2,1,3-benzothiadiazole into the backbone of polyfluorene, we developed a novel series of green light-emitting polymers with much improved color purity. Compared with the state-of-the-art green light-emitting polymer, poly(fluorene-co-benzothiadiazole) (λmax = 537 nm), the resulting polymers (λmax = 521 nm) showed 10–20 nm blueshifted electroluminescence (EL) spectra and greatly improved color purity because the insertion of two phenylene units between the 2,1,3-benzothiadiazole unit and the fluorene unit reduced the effective conjugation length in the vicinity of the 2,1,3-benzothiadiazole unit. As a result, the resulting polymers emitted pure green light with CIE coordinates of (0.29, 0.63), which are very close to (0.26, 0.65) of standard green emission demanded by the National Television System Committee (NTSC). Moreover, the insertion of the phenylene unit did not affect the photoluminescence (PL) and EL efficiencies of the resulting polymers. PL quantum efficiency in solid films up to 0.82 was demonstrated. Single-layer devices (ITO/PEDOT/polymer/Ca/Al) of these polymers exhibited a turn-on voltage of 4.2 V, luminous efficiency of 5.96 cd A−1 and power efficiency of 2.21 lm W−1. High EL efficiencies and good color purities made these polymers very promising for display applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call