Abstract
Medical textiles have gained significant interest for their capability to prevent the transmission of infectious diseases and ensure the safety of healthcare professionals. Nevertheless, the incorporation of eco-friendly methods to enhance the functionality of these textiles, achieving both impressive antibacterial features and notable ultraviolet (UV) protection, along with thermal stability for effective use in UV-induced clean chambers, remains a complex undertaking. The main objective of this study is to explore the application of the green chemistry method in immobilizing zinc oxide (ZnO) nanoparticles (NPs) onto polydopamine (PDA)-templated polyester (PET) fabrics for potential use in medical textiles. Specifically, we examined the impact of varying the concentration of the zinc acetate dihydrate as the Zn precursor on the synthesis of ZnO NPs. Nanoparticle morphology and topography were analyzed using SEM and AFM. Elemental and chemical characteristics were further assessed through EDS analysis, FT-IR analysis, Raman spectroscopy, and X-ray diffraction (XRD) techniques. The results indicate that ZnO NPs immobilized on PDA-templated PET fabrics exhibit exceptional antibacterial and UV protection properties. Moreover, the presence of the ZnO/PDA layer on the PET fabric significantly enhances its thermal stability, making it an ideal candidate for medical textile applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.