Abstract
The concept of Green Infrastructure (GI) emphasises the quality as well as quantity of urban, peri-urban greens spaces and natural areas, their multifunctional role, and the importance of interconnections between habitats. If a Green Infrastructure is proactively planned, developed, and maintained it has the potential to guide urban development by providing a framework for economic growth and nature conservation. GI includes parks and reserves, sporting fields, riparian areas like stream and river banks, greenways and trails, community gardens, street trees, and nature conservation areas, as well as less conventional spaces such as green walls, green alleyways, and cemeteries. Today we have to face new challenges about increasing energy use, decreasing water resources, limited spaces and ecological preservation. This problem must be solved in a sustainable way using innovative GI that combine technology with landscape design by enhancing ecosystem services provision.The aim of this research is to evaluate and develop multifunctional role of GI in terms of biodiversity and ecosystem services’ enhancement by taking into account two case study in southern Italy: Constructed Treatment and photovoltaic energy plants. An effective way of tackling water resource problem is to use Constructed Treatment Wetlands (CTW) as low-cost alternative to conventional secondary or tertiary wastewater treatment. For this purpose, an annual monitoring of fauna and vegetation was carried out in order to identify species of national and international interest strongly related to the new habitats availability. Results have shown the ability of CTW in providing ancillary benefits, well beyond the primary aim of water purification, such as sustaining wildlife habitats and biodiversity at local and global scales, as well as its potential role in terms of recreational and educational opportunities.In the second case, we developed a GI project idea that proposes to evolve the photovoltaic energy plants in southern Italy, especially in Apulia region, into “new urban photo-ecological gardens”. The aim of our research is to harmonise economic development and biodiversity conservation to safeguard the ecological processes that underpin human well-being, creating a strong synergism between renewable energy planning and valorisation of ecosystem services. Therefore, a new approach is proposed to manage photovoltaic solar farms, shifting from “negative vegetation management”, focused mainly at the elimination of invasive plants, to “active vegetation management”, i.e. the cultivation of plants with an economic and ecological value. This approach would offer many opportunities for integration between economic development, nature valorisation and public health promotion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.