Abstract

Green self-powered devices based on biodegradable materials have attracted widespread attention. Here, we propose the construction of the transient biotriboelectric nanogenerator (TENG) using green-in-green bionanocompoites. The green-in-green nanocomposites, cellulose nanocrystal (CNC)/polyhydroxybutyrate (PHB), are prepared with a high-pressure molding method. The CNC promotes the degradation and enhances the dielectric constant of CNC/PHB. It further allows for the significant improvement of the triboelectric output of CNC/PHB-based TENG. The voltage output and current output of CNC/PHB-based TENG are 5.7 and 12.5 times higher than those of pristine PHB-based TENG, respectively. Also, the bio-TENG exhibits admirable signal stability in over 20000 cycles. Despite the high hardness of CNC/PHB, a soft but simple-structured arch sensor is successfully assembled using CNC/PHB-based TENG. It can attain the precise real-time monitoring of various human motions. This study may provide new insights into the design/fabrication of green functional materials, and initiate the next wave of innovations in eco-friendly self-powered devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.