Abstract

The present work was designed to synthesize Ag2O-supported MgO/rGO nanocomposites (NCs) via green method using Phoenix leaf extract for improved photocatalytic and anticancer activity. Green synthesized Ag2O-supported MgO/rGO NCs were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman, ultraviolet-visible (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy, and gas chromatography-mass spectroscopy (GC-MS) was applied to examine the chemical components of the Phoenix leaf extract. Characterization data confirmed the preparation of MgO NPs, Ag2O-MgO NCs, and Ag2O-MgO/rGO NC with particle size of 26-28 nm. UV-vis study exhibited that the band gap energy of MgO NPs, Ag2O-MgO NCs, and Ag2O-MgO/rGO NC were in the range of 3.53-3.43 eV. The photocatalytic results showed that the photodegradation of Rh B dye of Ag2O-supported MgO/rGO NCs (82.81%) was significantly higher than pure MgO NPs. Additionally, the biological response demonstrates that the Ag2O-supported MgO/rGO NCs induced high cytotoxicity against MCF-7 cancer cells for 24h and 48h compared with both pure MgO NPs and Ag2O-MgO NCs. This study suggests that the adding of Ag2O and rGO sheets played significant role in the enhanced photocatalytic and anticancer performance of MgO NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call