Abstract

A green chemistry process, long-distance and dynamic low-temperature (LDDLT) H2O plasma, was developed to modify PE hollow fiber membranes in a module scale using our modified LDDLT plasma setup. The modification degree of LDDLT-H2O plasma was 2 times greater than that of Ar plasma, but the effective treatment distance achieved by LDDLT-Ar plasma was about two times of that obtained by LDDLT-H2O plasma (22cm). Under the suitable conditions, the effective treatment distance can reach over 54cm after LDDLT-H2O plasma treatment from the double inlets, closed to some industrial module sizes. The improvement in surface hydrophilicity was because of the introduction of numerous oxygen-containing groups. High concentrations of OH radicals in H2O plasma played a major role in the membrane surface hydroxylation. This directly resulted in a great enhancement in the pure water flux. It increased from about 6Lm−2h−1 to 45Lm−2h−1 after treatment. Also, the H2O plasma-treated membrane module exhibited good hydrophilic stability during 285days storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.