Abstract

Methanogenic archaea (methanogens) that inhabit the gut of termites generate enormous amount of methane that adds to the global atmospheric methane (CH 4 ). Methane is an important trace gas in the atmosphere, contributing significantly to long wave absorption and bringing in variations into the chemistries of both the troposphere and the stratosphere. In the troposphere, methane acts as a sink for hydroxide (OH) and as a source for carbon monoxide (CO). While in the stratosphere, methane is a sink for chlorine (Cl) molecules and a source of water vapor, which is a dominant greenhouse gas. Analysis has shown that atmospheric concentrations of methane have increased by about 30% over the last 40 years. Such an increase may greatly affect future levels of stratospheric ozone and hence, the climate of the earth. Recent estimates of the total annual source strength of CH 4 vary from 400 to 1200 Tg. Activities such as rice cultivation, cattle production, mining, use of fossil fuels and biomass burning is believed to be the cause of increasing methane levels in the atmosphere. To add to this list is the source from termites, which contributes measurable quantities of CH 4 ranging from 2 to 150 Tg per year. However, data indicate that while there are large variations in the amount of CH 4 produced by different species, the total methane addition due to termites is probably less than 15 Tg per year, thus making a contribution of less than 5% to global CH4 emissions. Furthermore, the review addresses questions related to the biological aspects of termite harboring groups of bacteria that participate in methanogenesis and various other biotechnological potential of unique microbiota as well as possible strategies to mitigate methanogenesis by termite. Key words: Macrotermes, methane, carbondioxide, GHG, methanobacteria, methanosarcina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.