Abstract

Three pyrazole derivatives, 3,5-dimethyl-1H-pyrazole (DMPz) (I), 3-methyl-5-phenyl-1H-pyrazole (MPPz) (II), and 3,5-diphenyl-1H-pyrazole (DPPz) (III), were prepared via reacting semicarbazide hydrochloride with the acetylacetone, 1-phenylbutane-1,3-dione, and 1,3-diphenylpropane-1,3-dione, respectively. Complexes 1–3 were isolated by reacting CuCl2·2H2O with I–III, respectively, and characterized by CHNS elemental analyses, FT-IR, UV-Vis, 1H and 13C NMR, EPR spectra, and TGA/DTA. Molecular structures of the pyrazole derivatives I–III and copper(II) complexes 2 and 3 were studied through single-crystal XRD analysis to confirm their molecular structures. Overlapping of hyperfine splitting in the EPR spectra of the dimeric copper(II) complexes 1–3 indicates that both copper centers do not possess the same electronic environment in solution. The copper(II) complexes are dimeric in solid state as well as in solution and catalyze the oxidation of various primary and secondary alcohols selectively. Catalysts 1–3 show more than 92% product selectivity toward ketones during the oxidation of secondary alcohols. Surprisingly primary alcohols, which are relatively difficult to oxidize, produce carboxylic acid as a major product (48%–90% selectivity) irrespective of catalytic systems. The selectivity for carboxylic acid rises with decreasing the carbon chain length of the alcohols. An eco-friendly and affordable catalytic system for oxidation of alcohols is developed by the utilization of H2O2, a green oxidant, and water, a clean and greener solvent, which is a notable aspect of the study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.